Improving Efficiency of a Multistart with Interrupted Hooke-and-Jeeves Filter Search for Solving MINLP Problems
نویسندگان
چکیده
This paper addresses the problem of solving mixed-integer nonlinear programming (MINLP) problems by a multistart strategy that invokes a derivative-free local search procedure based on a filter set methodology to handle nonlinear constraints. A new concept of componentwise normalized distance aiming to discard randomly generated points that are sufficiently close to other points already used to invoke the local search is analyzed. A variant of the Hooke-and-Jeeves filter algorithm for MINLP is proposed with the goal of interrupting the iterative process if the accepted iterate falls inside an -neighborhood of an already computed minimizer. Preliminary numerical results are included.
منابع مشابه
Multiple Solutions of Mixed Variable Optimization by Multistart Hooke and Jeeves Filter Method
In this study, we propose a multistart method based on an extended version of the Hooke and Jeeves (HJ) algorithm for computing multiple solutions of mixed variable optimization problems. The inequality and equality constraints of the problem are handled by a filter set methodology. The basic ideas present in the HJ algorithm, namely the exploratory and pattern moves, are extended to consider t...
متن کاملMultistart Hooke and Jeeves Filter Method for Mixed Variable Optimization
In this study, we propose an extended version of the Hooke and Jeeves algorithm that uses a simple heuristic to handle integer and/or binary variables and a filter set methodology to handle constraints. This proposal is integrated into a multistart method as a local solver and it is repeatedly called in order to compute different optimal solutions. Then, the best of all stored optimal solutions...
متن کاملA Hybrid Method Combining Genetic Algorithm and Hooke-jeeves Method for Constrained Global Optimization
A new global optimization method combining genetic algorithm and Hooke-Jeeves method to solve a class of constrained optimization problems is studied in this paper. We first introduce the quadratic penalty function method and the exact penalty function method to transform the original constrained optimization problem with general equality and inequality constraints into a sequence of optimizati...
متن کاملHeuristic Pattern Search for Bound Constrained Minimax Problems
This paper presents a pattern search algorithm and its hybridization with a random descent search for solving bound constrained minimax problems. The herein proposed heuristic pattern search method combines the Hooke and Jeeves (HJ) pattern and exploratory moves with a randomly generated approximate descent direction. Two versions of the heuristic algorithm have been applied to several benchmar...
متن کاملMultilocal Programming: A Derivative-Free Filter Multistart Algorithm
Multilocal programming aims to locate all the local solutions of an optimization problem. A stochastic method based on a multistart strategy and a derivative-free filter local search for solving general constrained optimization problems is presented. The filter methodology is integrated into a coordinate search paradigm in order to generate a set of trial approximations that might be acceptable...
متن کامل